Young–Fibonacci insertion, tableauhedron and Kostka numbers
نویسندگان
چکیده
منابع مشابه
On p-Kostka numbers and Young modules
The combinatorial properties of Young modules corresponding to maximal Young subgroups are studied: an explicit formula for p-Kostka numbers is given, and as applications, the ordinary characters of Young modules are described and a branching rule for Young modules is determined. Moreover, for certain n-part partitions the reduction formulas for p-Kostka numbers given in A. Henke, S. Koenig [Re...
متن کاملGeometric approaches to computing Kostka numbers and Littlewood-Richardson coefficients
Using tools from combinatorics, convex geometry and symplectic geometry, we study the behavior of the Kostka numbers Kλβ and Littlewood-Richardson coefficients cλμ (the type A weight multiplicities and Clebsch-Gordan coefficients). We show that both are given by piecewise polynomial functions in the entries of the partitions and compositions parametrizing them, and that the domains of polynomia...
متن کاملJa n 20 05 The computation of Kostka numbers and Littlewood - Richardson coefficients is # P - complete
Kostka numbers and Littlewood-Richardson coefficients play an essential role in the representation theory of the symmetric groups and the special linear groups. There has been a significant amount of interest in their computation ([1], [10], [11], [2], [3]). The issue of their computational complexity has been a question of folklore, but was asked explicitly by E. Rassart [10]. We prove that th...
متن کاملOn the complexity of computing Kostka numbers and Littlewood-Richardson coefficients
Kostka numbers and Littlewood-Richardson coefficients appear in combinatorics and representation theory. Interest in their computation stems from the fact that they are present in quantum mechanical computations since Wigner [15]. In recent times, there have been a number of algorithms proposed to perform this task [1–3, 11, 12]. The issue of their computational complexity has received attentio...
متن کاملPaths and Kostka–macdonald Polynomials
We give several equivalent combinatorial descriptions of the space of states for the box-ball systems, and connect certain partition functions for these models with the q-weight multiplicities of the tensor product of the fundamental representations of the Lie algebra gl(n). As an application, we give an elementary proof of the special case t = 1 of the Haglund–Haiman–Loehr formula. Also, we pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2009
ISSN: 0097-3165
DOI: 10.1016/j.jcta.2008.05.010